第5章(第3/4页)
作品:《时间简史读书分享ppt》之夹角来描述之。甚至这些座标对于描写太阳在我们星系中的位置,或我们星系在局部星系群中的位置也没有太多用处。事实上,人们可以用一族互相交迭的坐标碎片来描写整个宇宙。在每一碎片中,人们可用不同的三个座标的集合来指明点的位置。
图离开太阳的距离(以1012英里,1英里=公里,为单位)
一个事件是发生于特定时刻和空间中特定的一点的某种东西。这样,人们可以用四个数或座标来确定它,并且座标系的选择是任意的;人们可以用任何定义好的空间座标和一个任意的时间测量。在相对论中,时间和空间座标没有真正的差别,犹如任何两个空间座标没有真正的差别一样。譬如可以选择一族新的座标,使得第一个空间座标是旧的第一和第二空间座标的组合。例如,测量地球上一点位置不用在伦敦皮卡迪里圆环以北和以西的里数,而是用在它的东北和西北的里数(1英里=公里)。类似地,人们在相对论中可以用新的时间座标,它是旧的时间(以秒作单位)加上往北离开皮卡迪里的距离(以光秒为单位)。
图
将一个事件的四座标作为在所谓的时空的四维空间中指定其位置的手段经常是有助的。对我来说,摹想三维空间已经足够困难!然而很容易画出二维空间图,例如地球的表面。(地球的表面是两维的,因为它上面的点的位置可以用两个座标,例如纬度和经度来确定。)通常我将使用二维图,向上增加的方向是时间,水平方向是其中的一个空间座标。不管另外两个空间座标,或者有时用透视法将其中一个表示出来。(这些被称为时空图,如图所示。)例如,在图中时间是向上的,并以年作单位,而沿着从太阳到α-半人马座连线的距离在水平方向上以英哩来测量。太阳和α-半人马座通过时空的途径是由图中的左边和右边的垂直线来表示。从太阳发出的光线沿着对角线走,并且要花4年的时间才能从太阳走到α-半人马座。
正如我们已经看到的,麦克斯韦方程预言,不管光源的速度如何,光速应该是一样的,这已被精密的测量所证实。这样,如果有一个光脉冲从一特定的空间的点在一特定的时刻发出,在时间的进程中,它就会以光球面的形式发散开来,而光球面的形状和大小与源的速度无关。在100万分之1秒后,光就散开成一个半径为300米的球面;100万分之2秒后,半径变成600米;等等。这正如同将一块石头扔到池塘里,水表面的涟漪向四周散开一样,涟漪以圆周的形式散开并越变越大。如果将三维模型