第7章(第2/4页)
作品:《时间简史ppt》,人们就可类似地观察到从这恒星或星系来的光谱线。不同的恒星具有不同的光谱,但是不同颜色的相对亮度总是刚好和一个红热的物体发出的光谱完全一致。(实际上,从一个不透明的灼热的物体发出的光,有一个只依赖于它的温度的特征光谱——热谱。这意味着可以从恒星的光谱得知它的温度。)并且,我们发现,某些非常特定的颜色在恒星光谱里找不到,这些失去的谱线可以因不同的恒星而异。既然我们知道,每一化学元素都有非常独特的吸收光谱线族,将它们和恒星光谱中失去的谱线相比较,我们就可以准确地确定恒星大气中存在什么元素。
在20年代天文学家开始观察其他星系中的恒星光谱时,他们发现了最奇异的现象:它们和我们的银河系一样具有吸收的特征线族,只是所有这些线族都向光谱的红端移动了同样相对的量。为了理解这个含意,我们必须先理解多普勒效应。我们已经知道,可见光即是电磁场的起伏或波动。光的波长(或者相邻波峰之间的距离)极其微小,约为至米。
光的不同波长正是人眼看到的不同颜色,最长的波长出现在光谱的红端,而最短的波长在光谱的蓝端。想像在离开我们一个固定的距离处有一光源——例如恒星——以固定的波长发出光波。显然我们接收到的波长和发射时的波长一样(星系的引力场没有强到足以对它产生明显的效应)。现在假定这恒星光源开始向我们运动。当光源发出第二个波峰时,它离开我们更近一些,这样两个波峰之间的距离比恒星静止时更小。这意味着,我们接收到的波的波长比恒星静止时更短。相应地,如果光源离开我们运动,我们接收的波的波长将更长。这意味着,当恒星离开我们而去时,它们的光谱向红端移动(红移);而当恒星趋近我们而来时,光谱则蓝移。这个称之为多普勒效应的频率和速度的关系是我们日常所熟悉的,例如我们听路上来往小汽车的声音:当它开过来时,它的发动机的音调变高(对应于声波的高频率);当它通过我们身边而离开时,它的音调变低。光波或无线电波的行为与之类似。警察就是利用多普勒效应的原理,以无线电波脉冲从车上反射回来的频率来测量车速。
在哈勃证明了其他星系存在之后的几年里,他花时间为它们的距离以及观察到的光谱分类。那时候大部份人相信,这些星系的运动相当紊乱,所以预料会发现和红移光谱一样多的蓝移光谱。但是,十分令人惊异的是,他发现大部份星系是红移的——几乎所有都远离我们而去!更惊异的是1929年哈勃发表的结果:甚至星系红