第三十七章 我在脑海中解答出来的(第2/5页)

作品:《都市仙医武神 千寻月

跟我一起串通吗?”

张越神色一变,急忙道:“我不敢怀疑甄老师,可你怎么知道答案,你还没有进行解析。”

秦无道淡淡道:“因为我在脑海中解析出来了。”

“不可能!”

所有人都不相信,在脑海中解析,那还是人吗?

秦无道站起来,直接走到黑板上,拿起粉笔就是写起来,并且一边开口解释:“这一题首先是求导,解得f'(x)=3x^2+ag'(x)=2x+b

接着由条件可知在区间上,有(3x^2+a)(2x+b)≥0。”

“接着再画图f'(x)=3x^2+a,是一个顶点为(0,a)的,开口向上的抛物线。”

“同样画g'(x)=2x+b,是一条直线。”

“因为题目没有给a和b哪个大,题目就稍微复杂了一些。”

“可以分两种情况,先假设b大于a,所以区间就是(a,b),根据图像,我们可以知道直线与x轴的交点是(-b/2,0),若b大于0的话,所以就有b大于-b/2,那在区间(-b/2,0)上,g'(x)大于0,而f'(x)小于0,所以b不能大于0。”

“当b不大于0时,交点(-b/2,0)在y轴右边,或者y轴上(b=0),那么就有g'(x)在区间(a,b)上恒小于等于0,那么则表明f'(x)在(a,b)上也是恒小于等于0,通过图像可以发现,当x小于-√-a/3时,f'(x)大于0,所以就有a要大于等于-√-a/3,解得a大于等于-1/3.所以有a的范围是【-1/3,0),b的范围是(a,0】,所以就有|a-b|的最大值为1/3。”

“当b小于a时,那就直接有b小于0了,做图和上面一样,解得a大于等于-1/3,b大于等于-√-a/3,结果就解不下去了。”

张越忍不住追问了一句:“为什么当x小于-√-a/3时,f'(x)大于0,所以就有a要大于等于-√-a/3?”

秦无道解释:“先说第二个,由于g'(x)=2x+b与x轴的交点是(-b/2,0),由图像可知,当x大于-b/2时,g'(x)大于0,接着设b大于0,那就有-b/2小于0且小于b,那表示在(-b/2,0)的区间上,g'(x)大于0,而由图像可知,在(-√-a/3,0)的区间上,f'(x)小于0,那表明不论a和b是什么关系,在小于0上必然有一个